. C A ] 4 O ct 2 00 6 A SEMICLASSICAL PERSPECTIVE ON MULTIVARIATE ORTHOGONAL POLYNOMIALS

نویسندگان

  • LIDIA FERNÁNDEZ
  • MIGUEL A. PIÑAR
چکیده

Differential properties for orthogonal polynomials in several variables are studied. We consider multivariate orthogonal polynomials whose gradients satisfy some quasi–orthogonality conditions. We obtain several characterizations for these polynomials including the analogous of the semiclas-sical Pearson differential equation, the structure relation and a differential– difference equation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Systems of Multivariable Orthogonal Askey-wilson Polynomials

X iv :m at h/ 04 10 24 9v 1 [ m at h. C A ] 1 0 O ct 2 00 4 Some Systems of Multivariable Orthogonal Askey-Wilson Polynomials George Gasper* and Mizan Rahman† Abstract In 1991 Tratnik derived two systems of multivariable orthogonal Wilson polynomials and considered their limit cases. q-Analogues of these systems are derived, yielding systems of multivariable orthogonal Askey-Wilson polynomials ...

متن کامل

ar X iv : c s / 07 02 03 3 v 2 [ cs . I T ] 2 2 O ct 2 00 8 BOUNDS ON ORDERED CODES AND ORTHOGONAL ARRAYS

We derive new estimates of the size of codes and orthogonal arrays in the ordered Hamming space (the Niederreiter-Rosenbloom-Tsfasman space). We also show that the eigenvalues of the ordered Hamming scheme, the association scheme that describes the combinatorics of the space, are given by the multivariate Krawtchouk polynomials, and establish some of their properties. CONTENTS

متن کامل

ar X iv : s ol v - in t / 9 61 00 10 v 1 2 8 O ct 1 99 6 An orthogonal basis for the B N - type Calogero model

We investigate algebraic structure for the BN -type Calogero model by using the exchange-operator formalism. We show that the set of the Jack polynomials whose arguments are Dunkl-type operators provides an orthogonal basis.

متن کامل

O ct 2 00 1 CUMULANTS , LATTICE PATHS , AND ORTHOGONAL POLYNOMIALS

A formula expressing free cumulants in terms of the Jacobi parameters of the corresponding orthogonal polynomials is derived. It combines Flajolet's theory of continued fractions and Lagrange inversion. For the converse we discuss Gessel-Viennot theory to express Hankel determinants in terms of various cumulants.

متن کامل

Semiclassical asymptotics of orthogonal polynomials , Riemann - Hilbert problem , and universality in the matrix model

We derive semiclassical asymptotics for the orthogonal polynomials P n (z) on the line with respect to the exponential weight exp(−NV (z)), where V (z) is a double-well quartic polynomial, in the limit when n, N → ∞. We assume that ε ≤ (n/N) ≤ λ cr − ε for some ε > 0, where λ cr is the critical value which separates orthogonal polynomials with two cuts from the ones with one cut. Simultaneously...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006